jueves, 30 de junio de 2011

3.1 Areas

Para el cálculo de áreas de regiones planas consideraremos en primer lugar el caso en que la región está determinada por la gráfica de una función en [a,b] y el eje Ox, y después el caso en que la región la determinan los gráficos de dos funciones en [a,b], distinguiendo entre si estas funciones se cortan o no.

Área de una región determinada por la gráfica de una función en [a,b] y el eje Ox
La función toma valores positivos en todo [a,b].Sea una función f (x) definida en el intervalo [a,b]. Si la función es no negativa en [a,b], es decir, si f (x) ≥ 0 para todo x∈[a,b] , entonces el valor de la integral definida de f (x) entre a y b.
Sea a∫ f x dx , es igual al área delimitada por la gráfica de la función f (x) con el eje Ox entre las líneas verticales determinadas por x = a y x = b , tal como se muestra en la figura. Observamos que cuando f (x) es no negativa, su gráfica se sitúa por encima del eje Ox , en la parte positiva del eje de ordenadas.

La función toma valores negativos en todo [a,b]
Si la función f (x) es negativa (su gráfica se sitúa en la parte del plano que corresponde al eje de ordenadas negativo) entonces el valor de la integral  a∫ f x dx es negativo e igual en valor absoluto al del área delimitada por la gráfica de la integral con el eje Ox entre les líneas x = a y x = b . Con lo cual el área de la zona delimitada por la función con el eje Ox es  a−∫ f x dx Caso generalEn general, si el área que se quiere calcular la delimita, con el eje Ox y x = a y x = b ,
la gráfica de una función f (x) cuyo signo a lo largo del intervalo [a, b] pasa de positivo a negativo, o al contrario, habrá que tenerlo en cuenta y hacer el cálculo del área total sumando las áreas parciales calculadas en los intervalos de signo constante.

Área determinada por los gráficos de dos funciones en [a,b].
Las gráficas de las funciones no se cortan en [a, b].Dadas dos funciones f (x) y g(x) , para calcular el área determinada por sus gráficas entre las líneas verticales x = a y x = b bastará calcular las áreas determinadas por cada gráfica con el eje Ox, entre x = a y x = b , y después restar o sumar dichasáreas según sea la situación.Consideremos en primer lugar el caso en que una de las funciones es mayor o igual que la otra en todo el intervalo considerado. Es el caso en que la gráfica de una de las funciones se sitúa por encima de la gráfica de la otra. Supongamos, por ejemplo que f (x) ≥ g(x) en todo [a, b] . Entonces el área buscada es la integral de la diferencia entre las funciones
 f (x) y g(x) , o sea ∫ f x dx − ∫ g x dx =∫ f x − g x dx
A continuación se explicaran los 2 tipos de áreas a estudiar en esta unidad:

Área bajo la gráfica de una función:


Así como tambiénÁrea entre las gráficas de funciones:





El área es una medida de la extensión de una superficie, expresada en unidades de medida denominadas superficiales. Para superficies planas el concepto es más intuitivo. Cualquier superficie plana de lados rectos puede triangularse y se puede calcular su área como suma de las áreas de dichos triángulos. Ocasionalmente se usa el término "área" como sinónimo de superficie, cuando no existe confusión entre el concepto geométrico en sí mismo (superficie) y la magnitud métrica asociada al concepto geométrico (área).
Sin embargo, para calcular el área de superficies curvas se requiere introducir métodos de geometría diferencial.
Para poder definir el área de una superficie en general –que es un concepto métrico–, se tiene que haber definido un tensor métrico sobre la superficie en cuestión: cuando la superficie está dentro de un espacio euclídeo, la superficie hereda una estructura métrica natural inducida por la métrica euclídea

Historia
La idea de que el área es la medida que proporciona el tamaño de la región encerrada en una figura geométrica proviene de la antigüedad. En el Antiguo Egipto, tras la crecida anual de río Nilo inundando los campos, surge necesidad de calcular el área de cada parcela agrícola para restablecer sus límites; para solventar eso, los egipcios inventaron la geometría, según Heródoto.[1]
El modo de calcular el área de un polígono como la suma de las áreas de los triángulos, es un método que fue propuesto por primera vez por el sabio griego Antifón hacia el año 430 a. C. Hallar el área de una figura curva entraña más dificultad. El método de agotamiento consiste en inscribir y cincunscribir polígonos en la figura geométrica, aumentar el número de lados de dichos polígonos y hallar el área buscada. Con este sistema, que se conoce como método de exhausción de Eudoxo, consiguió hallar la fórmula para calcular el área de un círculo. Dicho sistema fue empleado tiempo después por Arquímedes para resolver otros problemas similares,[2] así como el cálculo aproximado del número π

Área de superficies curvas
El área de una superficie curva es más complejo y en general supone realizar algún tipo de idealización o límite para medirlo.
  • Cuando la superficie es desarrollable, como sucede con el área lateral de un cilindro o de un cono el área de la superficie puede calcularse a partir del área desarrollada que siempre es una figura plana. Una condición matemática necesaria para que una superficie sea desarrollable es que su curvatura gaussiana sea nula.
  • Cuando la superficie no es desarrollable, el cálculo de la superficie o la fórmula analítica para encontrar dicho valor es más trabajoso. Un ejemplo de superficie no desarrollable es la esfera ya que su curvatura gaussiana coincide con el inverso de su radio al cuadrado, y por tanto no es cero. Sin embargo la esfera es una superficie de revolución
Superficie de revolución
Cuando una superficie curva puede ser generada haciendo girar un curva plana o generatriz alrededor de un eje directriz, la superficie resultante se llama superficie de revolución y su área puede ser calculada fácilmente a partir de la longitud de la curva generatriz que al girar conforma la superficie. Si y=f(x) es la ecuación que define un tramo de curva, al girar esta curva alrededor del eje X se genera una superficie de revolución cuya área lateral vale

Cálculo general de áreas
Mediante la geometría diferencial de superficies o más generalmente la geometría riemanniana puede calcularse el área de cualquier superficie curva finita. Si la superficie viene dada por la función explícita z = f(x, y) entonces, dada una región Ω contenida en una superficie su área resultar ser:


De manera un poco más general si conocemos la ecuación paramétrica de la superficie en función de dos coordenadas cualesquiera u y v entonces el área anterior puede escribirse como:


Fuentes
 

No hay comentarios:

Publicar un comentario